Section 1.6. Exponential, Logarithmic & Inverse Trig Functions

Examples:

- 1. If y = 2x 4 then $x = \frac{1}{2}y + 2$. In words: the inverse of the function f(x) = 2x 4 is $f^{-1}(x) = \frac{1}{2}x + 2$. (NOTE: $f^{-1}(x) \neq 1/f(x)$.)
- 2. If $y = x^2 + 4$ then $x = \sqrt{y-4}$ or $x = -\sqrt{y-4}$ so x cannot be recovered from y. In words: there is no inverse of the function $g(x) = x^2 + 4$.

Definition: A function f(x) with domain A is said to be *one-to-one* if, for any $x_1, x_2 \in A, x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.

The function of Example 1 is one-to-one; that of Example 2 is not (g(-1) = g(1)).

Definition: Suppose f(x) is a one-to-one function with domain A and range B. Then the inverse f^{-1} of f is the function with domain B and range A defined by $f^{-1}(y) = x$ if and only if f(x) = y.

Horizontal Line Test: A function f(x) is one-to-one (so f^{-1} exists) if and only if every horizontal line intersects the graph y = f(x) at most once.

(Recall that the Vertical Line Test was a test fro functions.) Example 1: y = 2x + 4

Example 2: $y = x^2 + 4, x \ge 0.$

Finding f^{-1} :

- 1. Write y = f(x)
- 2. Solve for x in terms of y (if possible).
- 3. Interchange x and y.

Example: If $f(x) = x^2 + 4$, $x \ge 0$ then 1. $y = x^2 + 4$; 2. $x = \sqrt{y - 4}$; 3. $f^{-1} = \sqrt{x - 4}$. Graphs: For $y = x^2 + 4$ **RULE:** If f(x) is one-to-one then the graph of $f^{-1}(x)$ is the reflection of the graph of f in the line y = x.

Example: Consider $f(x) = (x + 2)^3 - 3$. We can actually find f^{-1} . Solve for x: $y = (x+2)^3 - 3$ means $x = (y+3)^{1/3} - 2$ so that $f^{-1}(x) = (x+3)^{1/3} - 2$. This says that f is one to one on the entire real line and has an inverse. Our earlier theorem says that f^{-1} is differentiable everywhere except possibly at f(-2) = -3. We can see in this case that the graph of f^{-1} is vertical at (-3,2).

Logarithm Functions. The function

$$f(x) = a^x$$

is decreasing if 0 < a < 1 and increasing if 1 < a and is uninteresting if a = 1. The function is 1–1 and we call its inverse $f^{-1}(x) = \log_a x$. Its graph is (case a > 1) Properties

- 1. $\log_a a^x = x$ $a^{\log_a x} = x$
- 2. $\log_a xy = \log_a x + \log_a y$
- 3. $\log_a x/y = \log_a x \log_a y$
- 4. $\log_a x^r = r \log_a x$

Special Case If a = e = 2.7318281828459... then we write $\log_e x = \ln x$ and call this logarithm, the natural logarithm.

$$\ln e^x = x \qquad e^{\ln x} = x$$

All Logarithms are related

$$\log_a x = \frac{\ln x}{\ln a}$$

Inverse Trigonometric Functions: The trigonometric functions are decidedly not 1–1. However there are standard restrictions of the trig functions which are 1–1.

$$\begin{array}{ll} \mathrm{Sin}\theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\ \mathrm{Cos}\theta & 0 \leq \theta \leq \pi \\ \mathrm{Tan}\theta & -\frac{\pi}{2} < \theta < \frac{\pi}{2} \end{array}$$

$$\begin{array}{ll} \operatorname{Cot} \theta & 0 < \theta < \pi \\ \operatorname{Sec} \theta & 0 \leq \theta \leq \pi, \theta \neq \frac{\pi}{2} \\ \operatorname{Csc} \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \theta \neq 0 \end{array}$$

Each of these functions have an inverse that is useful in trigonometric problems but the ones that are the most useful in calculus are $\sin\theta$ and $\tan\theta$ which have inverse $\sin^{-1} x = \arcsin x$ and $\tan^{-1} x = \arctan x$. Graph the functions and their inverses.